Spotify Data Analysis

Music taste prediction: Spotify dataset

importing all required module for development

Librbaries for dataframe and numerical operations
import numpy as np
import pandas as pd

Librabries for visualization
import matplotlib.pyplot as plt

import seaborn as sns
¢matplotlib inline

Analysis of Dataset

First of all, will read dataset with the help of pandas.

Reading the data from the CSV file
spotify data = pd.read_csv('Spotify data.CSV')

Reteriving first few data
spotify data.head(7)

danceability energy key loudness mode speechiness acoustichess

0 0.803 0.6240 7 -6.764 0 0.0477
1 0.762 0.7030 10 -7.951 0 0.3060
2 0.261 0.0149 1 -27.528 1 0.0419
3 0.722 0.7360 3 -6.994 0 0.0585
4 0.787 0.5720 1 -7.516 1 0.2220
5 0.778 0.6320 8 -6.415 1 0.1250
6 0.666 0.5890 0 -8.405 0 0.3240

Let's check for datatype of each column.

Checking info regarding loaded dataset
spotify data.info()

0.4510
0.2060
0.9920
0.4310
0.1450
0.0404

0.5550

instrumentalness
0.000734
0.000000
0.897000
0.000001
0.000000
0.000000

0.000000

1/11

shivprasad Jamdade

shivprasad Jamdade

Spotify Data Analysis
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 195 entries, 0 to 194
Data columns (total 14 columns):

Column Non-Null Count Dtype
0 danceability 195 non-null float64
1 energy 195 non-null float64
2 key 195 non-null int64
3 loudness 195 non-null float64
4 mode 195 non-null int64
5 speechiness 195 non-null float64
6 acousticness 195 non-null float64
7 instrumentalness 195 non-null float64
8 liveness 195 non-null float64
9 valence 195 non-null float64
10 tempo 195 non-null float64
11 duration ms 195 non-null int64
12 time signature 195 non-null int64
13 1liked 195 non-null int64

dtypes: float64(9), int64(5)
memory usage: 21.5 KB

From above output we can see that all of the variables present are numerical.
Now, will check for any missing value present in data.

Checking missing values
spotify data.isna().sum()

danceability
energy

key

loudness

mode
speechiness
acousticness
instrumentalness
liveness
valence

tempo
duration ms
time_signature
liked

dtype: inté64

O OO OO OO OO OoO O oo o

By looking at above values we can say their is no missing value found in current dataset.
Will print the overall statistics of columns present in dataset before that will check if the
dataset contain any duplicates.

Making sum of all duplicates rows found
sum(spotify data.duplicated())

0

From above infromation count it can be seen that there are no duplicate data found.
Creating new column named as duration_mins by converting existing column
duration_ms value milliseconds to minutes and droping of the column duration_ms.

Converting milliseconds to minutes
spotify data["duration mins"] = spotify data["duration ms"]/60000
spotify data.drop(columns="duration ms", inplace=True)

2/11

shivprasad Jamdade

shivprasad Jamdade

Spotify Data Analysis

In [8]: # reteriving description of dataset
spotify data.describe()
Out[8]: danceability energy key loudness mode speechiness acoustic
count 195.000000 195.000000 195.000000 195.000000 195.000000 195.000000 195.00
mean 0.636656 0.638431 5.497436 -9.481631 0.538462 0.148957 0.31
std 0.216614 0.260096 3.415209 6.525086 0.499802 0.120414 0.32
min 0.130000 0.002400 0.000000 -42.261000 0.000000 0.027800 0.00
25% 0.462500 0.533500 2.000000 -9.962000 0.000000 0.056800 0.04
50% 0.705000 0.659000 6.000000 -7.766000 1.000000 0.096200 0.21
75% 0.799000 0.837500 8.000000 -5.829000 1.000000 0.230500 0.50
max 0.946000 0.996000 11.000000 -2.336000 1.000000 0.540000 0.99
By looking at above statistic values of columns we can inferred that
e Column 'time_signature' conatin same values for first, second and third quartile.
e For column 'liked' it seems to have mean nearly equal to 0.5 which is nothing but the
even distribution.
e 'loudness', 'tempo’, 'time_signature', and 'duration_ms' columns contain scale of
different values.
In [9]: # getting count of particular column values
spotify data['liked'].value counts()
out[o]: ! 100
0 95
Name: liked, dtype: inté64
In [10]: # Plotting the graph for values in liked column
sns.countplot(x="'liked', data=spotify data, palette='hls')
plt.show()
plt.savefig('count plot')
100 1
m -
a B0 -
=
=
2
40 -
m -
ﬂ_
liked
<Figure size 432x288 with 0 Axes>
In [11]: # with the grouby clause on liked column calculating mean for all paramaters

spotify data.groupby('liked').mean()

3/11

shivprasad Jamdade

shivprasad Jamdade

Spotify Data Analysis

danceability energy key loudness mode speechiness acousticness it
liked
(0] 0.510432 0.591538 5.652632 -12.224537 0.526316 0.076069 0.377977
1 0.756570 0.682980 5.350000 -6.875870 0.550000 0.218201 0.263154

Plotting histogram for all the parameters in dataset
histplot = spotify data.hist(bins=20, figsize=(18,15))

danceability energy key loudness

F=)

20

= w 5 B
e w B H B N =2
- B B B & £

0.0 02 04 06 08 10 0.0 25 50 75 10.0 —40 -30 -20 -10

speechiness acousticness instrumentalness

- B B g
[§
o B 8 B &

= 8 o2 & g
o= &8z g8 8 E

0.0 02 04 06 08 10 01 02 03 04 05 0o 0.2 04 06 0.8 10

liveness valence tempo time_signature

0.0 02 04 0.6 08 10

._.
.
w
s
wn

liked duration_mins

- % & B 8 8

This histogram is created for checking the relationship between the variables from
dataset.

Plotting correlation map to see relationship between parameters

corr() function finds pairwise correlation of all columns
correlation = spotify data.corr()

Creating a heatmap of correlation using seaborn library

fig, axes = plt.subplots(figsize=(10,10))

sns.heatmap(correlation, cmap='Blues', square=True, annot=True)

Giving the title to the heatmap

plt.title('Heatmap for correlation of all the tracks numeric values')
Displaying the heatmap

plt.show()

4/11

shivprasad Jamdade

shivprasad Jamdade

Spotify Data Analysis

100
Heatmap for correlation of all the tracks numeric values
danceability 046 0.23 0.81 0.14 gHr
075
energy 081 021 012
key 0.097
050
loudness Rkl 8 ity 0,66 0.54 (k] » 027 021
mode 0075
speechiness SHER 28 E 025
acousticness -40.23 0.77 .66
instrumentalness - 0.81 0.24 4.54 11{I?5m 057 0.3 038
0.00
liveness -40.14 0.078
valence Rk 0.3 1 ULy 0.31 057
tempo : 021 0.097 027 : 1 MRO¥2 0.37 -—0.25
time_signature JEEESIE 021 2 Dorz 1
=P 057 (018 050
duration_mins -40.23 0.13
i i i i | i i
T = e] a] ui] a =]
e g8 § g &8 g 2 8 g
8 2 5 £ 5 5§ & g = | --0.75
b 3] B = g
=] =] 7] =
c u g
L g

duration mins

z
=
=
]
=
=y
wi
LA}
E
E=]

instrumentalness

After plotting heat map we got the idea of relation between the parameters of dataset.

¢ white color represent negative correlation
e blue represents medium correlation
e Dark blue represents high correlation

Now, Splitting up dataset into training data and test data

In [14]: # Shuffling data to avoid prediction error
temp data = spotify data.sample(frac=1)

calucating size for splitting up the data in two groups one called as
training data other called as testing data.
sizeOfdata = int(len(spotify data) * 0.75)

splitting the dataset in two parts
training dataset = temp data| : sizeOfdata]
testing dataset = temp data[sizeOfdata :]

assigning the training and testing dataset values by taking appropriate cc
as the columns are in series type we need to make them as np.array type sc
so it will directly convert them to np.arrays

X _training, y training = training dataset.drop('liked',axis=1).values, trair
X _testing, y testing = testing dataset.drop('liked', axis=1).values, testing

making transpose of matrix to make it in n by m size
X_training = x training.T

5/11

shivprasad Jamdade

shivprasad Jamdade

Spotify Data Analysis

reshaping the matrix in shape 1 by m
y_training = y_ training.reshape(l, x_training.shape[l])

making transpose of matrix to make it in n by m size
X _testing = x_testing.T

reshaping the matrix in shape 1 by m

y_testing = y testing.reshape(l, x_testing.shape[l])

printing the order of matrix for above transformation
print(x_training.shape)
print(y_training.shape)
print(x_testing.shape)
print(y_testing.shape)

(13, 146)
(1, 146)
(13, 49)
(1, 49)

defining activation function which is also known as sigmoidal function
function takes input as any number and convert it to number between 0 to 1
def sigmoid_function(z):

return 1/(l+np.exp(-1*z))

defining the prediction function which takes argument as weight matrix anc
def probabilistic_prediction function(weight matrix, x matrix, b):
return np.dot(weight matrix.T, x matrix)+ b

defining the cost function which takes argument as target martix, no of el
and sigma value which is nothing but the predicted value from sigmoid func
def cost function(y matrix, size, sigma_value):

return -(1/size)*np.sum(y matrix#*np.log(sigma value)+(l-y matrix)*np.loc

gradient descent to minimize the cost/error takes input as data matrix, pz
def gradient descent(x matrix, y matrix, sigma value, size):

delta w = (1/size)*np.dot(sigma value-y matrix, x matrix.T)

delta b = (1/size)*np.sum(sigma value+y matrix)

return delta w, delta_ b

This code is referred from below link
https://github.com/Jaimin09/Coding-Lane-Assets/blob/main/Logistic%20Regres
defining algorithm for logistic regression with input as data matrix , lerz
and the number of iteration
def binar logistic_regression algorithm(X, Y, alpha, no of iterations):
getting the size of input matrix
= X.shape[1]
X.shape[0]
Preparing weight matrix with order n by 1 and all values will be zero
= np.zeros((n,1))
bias value assigned as zero
=0
list which will be used to store the value calculated for each iterati
cost _list = []
loop which will run till n number of iterations given
for iterate in range(no_of iterations):
Calling predction function
P = probabilistic_prediction function(W, X, B)
calling Sigmoidal function with paramater as value return by predi
sigma = sigmoid function(P)
calling the cost function to calculate the error which conatin ing
value return from sigmoidal function
cost = cost_function(Y, m, sigma)
calling gradient descent function which will return 2 values dw ar

N

WO KR =B B

6/11

shivprasad Jamdade

shivprasad Jamdade

Spotify Data Analysis

dw, dB = gradient descent(X, Y, sigma, m)
calculating value of wight matrix with learning rate and derivativ
W = W - alpha*dwW.T
calculating value of bias with learning rate and derivative calcul
B = B - alpha*dB
addng the cost value to cost list
cost_list.append(cost)
1f the current iteration number is divisible by a certain value (1
it prints the current iteration number and the current cost value.
if iterate % (no_of iterations/10) == 0:

print(f"iteration {iterate}, objective: {cost}")

returning the weights, bias and cost list derived in above function
return W, B, cost list

calling the algorithm defined above with
training datasets, learning rate as 0.0005 and iterations as 1000
W, B, cost_list = binar logistic_regression algorithm(x training, y_ traininc

iteration 0, objective: 0.6931471805599453

iteration 100, objective: 0.6084943912399452
iteration 200, objective: 0.5784217058267062
iteration 300, objective: 0.5623082386228897
iteration 400, objective: 0.5521156398602929
iteration 500, objective: 0.5450313729941813
iteration 600, objective: 0.5397891092607254
iteration 700, objective: 0.535726829017172

iteration 800, objective: 0.5324632775422579
iteration 900, objective: 0.5297636214271099

This code is referred from below link

https://github.com/Jaimin09/Coding-Lane-Assets/blob/main/Logistic%20Regres
plotting the graph to visualize if the cost is reducing or not for given r
plt.plot(np.arange(1000),cost_list)

plt.xlabel('no of iterations')

plt.ylabel('cost')

plt.title('Graph of cost vs iterations')

plt.show()

Graph of cost vs iterations

0700 1

0675 1

(Le50 1

625 -

cost

0La00 -

575 1

0550 1

0525 1

T T T T
o 200 400 BO0 ao0 1000
no of iterations

Testing Model Accuracy

defining function which us used to find accuracy of algorithm return above
This code is referred from below link

https://github.com/Jaimin09/Coding-Lane-Assets/blob/main/Logistic%20Regres
def accuracy(X, Y, W, B):

7/11

shivprasad Jamdade

shivprasad Jamdade

Spotify Data Analysis

Calling prediction function

= probabilistic_prediction_ function(W, X, B)

calling sigmoidal function with value calculated for prediction functi
= sigmoid_ function(Z)

checking for value present in A is greater than 0.5 just to check

=A > 0.5

Creating new numpy array from A matrix with datatype as int64

= np.array(A, dtype = 'int64")

calculating the accuracy of a model or prediction by calculating

the mean absolute error and then converting it to percentage accuracy.
acc = (1 - np.sum(np.absolute(A - Y))/Y.shape[1])*100

printing the value of accuracy with last two decimal point

print ("Accuracy of the model is : ", round(acc, 2), "%")

R Y N NI N N

Calling accuracy function by sending input as testing dataset with weight
binary logistic regression algorithm define above
accuracy(x_testing, y_ testing, W, B)

Accuracy of the model is : 87.76 %

Testing the algorithm's performance by excluding certain
columns

In this case removed instrumentalness and mode parameter from dataset to see how
algorithm behaves and output result

e Here i removed instrumentalness and mode column to check accuracy

Removing some columns to measure the accuracy of algorithm
temp datal = temp data.drop(['instrumentalness', 'mode’'],axis=1)

calucating size for splitting up the data in two groups one called as
training data other called as testing data.
sizeOfdata = int(len(spotify data) * 0.75)

splitting the dataset in two parts
training dataset = temp datal[: sizeOfdata]
testing dataset = temp datal[sizeOfdata :]

assigning the training and testing dataset values by taking appropriate cc
as the columns are in series type we need to make them as np.array type sc
so it will directly convert them to np.arrays

x_training, y_training = training dataset.drop('liked',axis=1).values, trair
X _testing, y testing = testing dataset.drop('liked',axis=1).values, testing

making transpose of matrix to make it in n by m size
X_training = x training.T

reshaping the matrix in shape 1 by m

y_training = y_ training.reshape(l, x_training.shape[l])

making transpose of matrix to make it in n by m size
X _testing = x_testing.T

reshaping the matrix in shape 1 by m

y_testing = y testing.reshape(l, x_testing.shape[l])

printing the order of matrix for above transformation
print(x_training.shape)
print(y_training.shape)
print(x_testing.shape)
print(y_ testing.shape)

8/11

shivprasad Jamdade

shivprasad Jamdade

Spotify Data Analysis

(11, 146)
(1, 146)
(11, 49)
(1, 49)

#Calling the function to test the newly created dataset after remobing the
W, B, cost_list = binar logistic_regression algorithm(x training, y_ traininc

iteration 0, objective: 0.6931471805599453

iteration 100, objective: 0.6088187800517987
iteration 200, objective: 0.5789341554433725
iteration 300, objective: 0.5629840320275862
iteration 400, objective: 0.552945926513415
iteration 500, objective: 0.5460114059160153
iteration 600, objective: 0.5409156811502827
iteration 700, objective: 0.5369974747552252
iteration 800, objective: 0.5338759610184421
iteration 900, objective: 0.5313165890483339

plotting the graph to visualize if the cost is reducing or not for given r

plt.plot(np.arange(1000),cost_list)
plt.xlabel('no of iterations')
plt.ylabel('cost')

plt.title('Graph of cost vs iterations')
plt.show()

Graph of cost vs iterations

0700 1

LT3 1

0650 1

0625 1

cost

0e00 -

575 1

0550 1

0525 1

T T T
o 200 400 BO0 aoa
no of iterations

#Calling the accuracy function which will return the result

accuracy(x_testing, y_ testing, W, B)

Accuracy of the model is : 87.76 %

e Now, removing loudness, valence and instrumentalness to check the accuracy of

algorithm

Removing some columns to measure the accuracy of algorithm
temp data2 = temp data.drop(['loudness', 'valence', 'instrumentalness'],axis=1

calucating size for splitting up the data in two groups one called as

training data other called as testing data.
sizeOfdata = int(len(spotify data) * 0.75)

splitting the dataset in two parts
training dataset = temp data2[: sizeOfdata]
testing dataset = temp data2[sizeOfdata :]

T
1000

9/11

shivprasad Jamdade

shivprasad Jamdade

Spotify Data Analysis

assigning the training and testing dataset values by taking appropriate cc
as the columns are in series type we need to make them as np.array type sc
so it will directly convert them to np.arrays

x_training, y_training = training dataset.drop('liked',axis=1).values, trair
X _testing, y testing = testing dataset.drop('liked',axis=1).values, testing

making transpose of matrix to make it in n by m size
X_training = x training.T

reshaping the matrix in shape 1 by m

y_training = y_ training.reshape(l, x_training.shape[l])

making transpose of matrix to make it in n by m size
X _testing = x_testing.T

reshaping the matrix in shape 1 by m

y_testing = y testing.reshape(l, x_ testing.shape[l])

printing the order of matrix for above transformation
print(x_training.shape)
print(y_training.shape)
print(x_testing.shape)
print(y_ testing.shape)

(10, 146)
(1, 146)
(10, 49)
(1, 49)

#Calling the function to test the newly created dataset after remobing the
W, B, cost_list = binar logistic_regression algorithm(x training, y_ traininc

iteration 0, objective: 0.6931471805599453

iteration 100, objective: 0.674644964101805
iteration 200, objective: 0.663830066873527
iteration 300, objective: 0.6544375987802056
iteration 400, objective: 0.6461925340415315
iteration 500, objective: 0.6388853025717947
iteration 600, objective: 0.6323552153301287
iteration 700, objective: 0.6264779530948529
iteration 800, objective: 0.6211562771832443
iteration 900, objective: 0.6163131933387173

plotting the graph to visualize if the cost is reducing or not for given r
plt.plot(np.arange(1000),cost_list)

plt.xlabel('no of iterations')

plt.ylabel('cost')

plt.title('Graph of cost vs iterations')

plt.show()

10/11

shivprasad Jamdade

shivprasad Jamdade

Spotify Data Analysis

Graph of cost vs iterations

069

068

a7

066

065

cost

064

63 1

a2 1

el 4

T T T T
] 200 400 GO0 800 1000
no of iterations

#Calling the accuracy function which will return the result
accuracy(x_testing, y_ testing, W, B)

Accuracy of the model is : 75.51 %

11/11

shivprasad Jamdade

shivprasad Jamdade

